18 research outputs found

    Heat transfer intensification of Zirconia/water nanofluid

    Get PDF
    This paper investigated convective heat transfer and friction factor of ZrO2/H2O nanofluid through a circular pipe under laminar flow condition with constant heat flux. Nanofluid is prepared for 0.5, 0.75 and 1% volume concentrations with yttrium oxide surfactant. Nanofluid’s thermal conductivity and viscosity is measured by KD2 Pro thermal analyser and Brookfield viscometer respectively. Results showed that the thermal conductivity and viscosity increased with increase in particle volume concentration. These nanofluids are experimented in a forced convection system, first heat transfer characteristics of DI (Deionised) water  under laminar flow in a copper tube measured, then three nanofluids are carried out the tests, results revealed that the enhanced Nusselt numbers of 21.09,28.05 and 35.73%  at the 0.5, 0.75 and 1% volume concentrations, There is no excess penalty in pumping power  and results showed  less variations in friction factor for nanofluids comparatively with the base fluid DIWater

    Denoising of impulse noise using partition-supported median, interpolation and DWT in dental X-ray images

    Get PDF
    The impulse noise often damages the human dental X-Ray images, leading to improper dental diagnosis. Hence, impulse noise removal in dental images is essential for a better subjective evaluation of human teeth. The existing denoising methods suffer from less restoration performance and less capacity to handle massive noise levels. This method suggests a novel denoising scheme called "Noise removal using Partition supported Median, Interpolation, and Discrete Wavelet Transform (NRPMID)" to address these issues. To effectively reduce the salt and pepper noise up to a range of 98.3 percent noise corruption, this method is applied over the surface of dental X-ray images based on techniques like mean filter, median filter, Bi-linear interpolation, Bi-Cubic interpolation, Lanczos interpolation, and Discrete Wavelet Transform (DWT). In terms of PSNR, IEF, and other metrics, the proposed noise removal algorithm greatly enhances the quality of dental X-ray images

    Analysis of phenolic and flavonoid compounds in Malaysia propolis extracts by LC-Q-TOFMS

    Get PDF
    Propolis is a natural bee product which is resinous sticky wax (bee glue) that synthesized by the stingless bees from the mixtures of exudates of plants and bee enzymes. The chemical compounds of propolis mainly consists of phenolic acids and flavonoids. Since propolis has been consumed for ages as a traditional medicine and research on the Malaysia propolis is still lacking, this study was conducted. Therefore, propolis was 1 extracted by Soxhlet Extraction (using two different solvents) and 2 determined their chemical profiling by using LC-QTOFMS which 3 focusing on potential API that can be used in pharmaceutical product

    Vacuum System Assisted Fdm – Characteristic Of Heat Transfer Using Finite Element Analysis

    Get PDF
    Fused deposition modeling (FDM) process is one of the most efficient and used additive manufacturing technologies. For years, building functional components with good mechanical strength has been a difficult task. Generally, FDM process is operated in a room with or without an enclosure to produce physical polymer components. Therefore, the inconsistencies from different environmental factor such as temperature and air quality have indirectly affected its quality build. Vacuum technology has been used in the wide area of applications by creating an empty space of matter. However, there is no investigation of FDM operated in a vacuum environment. This paper aims to study the behaviour of the temperature inside a vacuum assisted FDM by performing finite element analysis. A heated nozzle and heated bed will be placed inside a vacuum chamber with a constant heat source and the initial temperature set at room temperature. The pressure range from 30 inHg (1 atm) to 1 inHg will be the manipulated variable. The result shows that as the pressure decreases, the transient heat transfer (natural convective heating) also reduced and the velocity of air flow became more consistent. This study was able to prove how different vacuum pressures can affect the heat inside a vacuum chamber. Results from this study can be used to further analyse the mechanical strength of vacuumed printed components in actual experimentation

    Preparation of activated carbon by chemical activation and its In Vitro adsorption efficacy tests for Paraquat

    Get PDF
    The effects of different activation temperature on the pore size and surface morphology of activated carbon produced by H3PO4 (30%) chemical activation were studied in this paper. Well developed pore size and highest surface area observed on activated carbon at 6000C were determined by Scanning Electron Microscope and Brunauer, Emmett and Teller (BET) method. The highest BET surface area was 1491 m2g-1 observed with sample HEAC-2 (highly efficient activated carbon -2). The adsorption efficacy of activated carbon for paraquat was also investigated and compared with commercially available activated carbon. The study shows that the amount of paraquat adsorbed was 3.62 mgL-1 for produced activated carbon and 3.42mg L-1 for commercially available activated carbon. The adsorbing capacity of activated carbon (produced and commercially available) for paraquat increased when it was suspended in NaCl (0.9%) solution. In the presence of NaCl solution, the amount of paraquat adsorbed increased from 3.62mg L-1 to 4.68mg L-1 for produced activated carbon and 3.42 mg L-1 to 4.18mg L-1 for commercially available activated carbo

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    COST ANALYSIS STUDY OF MIXED MATRIX MEMBRANES FOR CO2/CH4 GAS SEPARATION

    No full text
    Membrane technology is well known for its promising features in separating CO2/CH4 gas mixtures

    Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    No full text
    Wood Ash (WA) and Silica Fume (SF) exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight) and SF (5%, 10%, and 15% by binder weight) were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete
    corecore